Multiplicative Ergodicity and Large Deviations for an Irreducible Markov Chain∗
نویسندگان
چکیده
The paper examines multiplicative ergodic theorems and the related multiplicative Poisson equation for an irreducible Markov chain on a countable state space. The partial products are considered for a realvalued function on the state space. If the function of interest satisfies a monotone condition, or is dominated by such a function, then (i) The mean normalized products converge geometrically quickly to a finite limiting value. (ii) The multiplicative Poisson equation admits a solution. (iii) Large deviation bounds are obtained for the empirical measures.
منابع مشابه
AN APPLICATION OF TRAJECTORIES AMBIGUITY IN TWO-STATE MARKOV CHAIN
In this paper, the ambiguity of nite state irreducible Markov chain trajectories is reminded and is obtained for two state Markov chain. I give an applicable example of this concept in President election
متن کاملADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes
In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...
متن کاملSpectral Theory and Limit Theorems for Geometrically Ergodic Markov Processes
Consider the partial sums {St} of a real-valued functional F (Φ(t)) of a Markov chain {Φ(t)} with values in a general state space. Assuming only that the Markov chain is geometrically ergodic and that the functional F is bounded, the following conclusions are obtained: Spectral theory: Well-behaved solutions f̌ can be constructed for the “multiplicative Poisson equation” (eP )f̌ = λf̌ , where P is...
متن کاملThe Rate of Rényi Entropy for Irreducible Markov Chains
In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.
متن کاملLarge Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes
In this paper we continue the investigation of the spectral theory and exponential asymptotics of primarily discrete-time Markov processes, following Kontoyiannis and Meyn [34]. We introduce a new family of nonlinear Lyapunov drift criteria, which characterize distinct subclasses of geometrically ergodic Markov processes in terms of simple inequalities for the nonlinear generator. We concentrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002